
Testing AI on language 
comprehension tasks reveals 
insensitivity to underlying meaning
Vittoria Dentella1,2, Fritz Günther3, Elliot Murphy4, Gary Marcus5 & Evelina Leivada6,7

Large Language Models (LLMs) are recruited in applications that span from clinical assistance and 
legal support to question answering and education. Their success in specialized tasks has led to the 
claim that they possess human-like linguistic capabilities related to compositional understanding and 
reasoning. Yet, reverse-engineering is bound by Moravec’s Paradox, according to which easy skills are 
hard. We systematically assess 7 state-of-the-art models on a novel benchmark. Models answered a 
series of comprehension questions, each prompted multiple times in two settings, permitting one-
word or open-length replies. Each question targets a short text featuring high-frequency linguistic 
constructions. To establish a baseline for achieving human-like performance, we tested 400 humans 
on the same prompts. Based on a dataset of n = 26,680 datapoints, we discovered that LLMs perform 
at chance accuracy and waver considerably in their answers. Quantitatively, the tested models are 
outperformed by humans, and qualitatively their answers showcase distinctly non-human errors in 
language understanding. We interpret this evidence as suggesting that, despite their usefulness in 
various tasks, current AI models fall short of understanding language in a way that matches humans, 
and we argue that this may be due to their lack of a compositional operator for regulating grammatical 
and semantic information.

Large Language Models (LLMs) are neural networks trained on generating probability distributions over natural 
language data. Through interfaces that allow direct interaction with users, LLMs (i.e., the underlying models 
together with their respective interface setup) perform tasks that span from translation to answering a wide range 
of general queries1, spanning domains as diverse as law2, medicine3,4, and chemistry5. Yet, good performance 
in tasks that require memorizing specialized knowledge is not necessarily grounded in a solid understanding of 
language, such that LLMs may fail at comparatively easier tasks (Moravecs paradox6–8). Reverse-engineering is 
harder for simple, effortless tasks that our minds do best9; and understanding language is easy for humans, with 
even eighteen-month-olds demonstrating an understanding of complex grammatical relations10. Our species 
is characterized by an irrepressible predisposition to acquire language, to seek meaning beneath the surface 
of words, and to impose on linear sequences a surprisingly rich array of hierarchical structure and relations11.

Based on their success in various applied tasks, featured in a wide array of testing benchmarks [see e.g., 12–19], 
LLMs have been linked with human-like capabilities such as advanced reasoning (OpenAI on ChatGTP and 
GPT-420), understanding across modalities (Google on Gemini21), and common sense1. Some scholars have 
claimed that LLMs approximate human cognition, understand language to the point that their performance 
aligns with or even surpasses that of humans, and are good models of human language22–24. However, much 
evidence exists pointing to possible inconsistencies in model performance. Models can both produce highly 
fluent, semantically coherent outputs25–27,1 whilst also struggling with fundamental syntactic or semantic 
properties of natural language28–34. Observing errors in the linguistic performance of LLMs begs the question 
of how their application in various tasks, such as replying to a medical or legal question, is affected by possible 
language limitations, and may in fact be achieved through some series of computational steps entirely remote 
from a cognitively plausible architecture for human language35.

While shortcomings in LLM performance do not negate their usefulness as tools for specific applied uses, 
they do invite serious concerns over what guides output generation: is it (i) context-sensitive text parsing (i.e., 
the ability to pair specific linguistic forms with their corresponding meanings) in a way that generalizes across 
contexts36,37, or (ii) the mechanistic leveraging of artifacts present in the training data38, hence giving merely 
the illusion of competence? At present, the dominant means of evaluating LLMs consists in employing their 
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(well-formed) outputs as a basis to infer human-like language skills (modus ponens, for39). For instance, accurate 
performance in language-oriented tasks and benchmarks [e.g.,40–42] is used to conclude that the LLMs have 
succeeded not only at the specific task they performed, but also at learning the general knowledge necessary 
in order to carry out that task [cf.43]. This line of reasoning lies at the basis for holding LLMs as cognitive 
theories23,44.

On the other hand, assuming competence for LLMs over all morphosyntactic, semantic and pragmatic 
processes involved in language comprehension clashes with their inability to consistently deploy the knowledge 
that is attributed to them31,32,44. We list the grammaticality judgments (i.e., judgments about whether a prompt 
complies with or deviates from the language patterns that the model has internalized) of two frontier LLMs on 
linguistic prompts that are less frequent in day-to-day language and, consequently, are considerably less likely to 
form part of the training data (Fig. 1). While in humans the influence of cognitive factors (e.g., working memory 
limitations or distraction) can affect language processing in ways that may result in non-target grammaticality 
judgments, humans are able to correctly process the stimuli upon reflection; that is, we can engage in ‘deep’ 
processing after an initial ‘shallow’ parse45. For LLMs, however, there is no analogous straightforward explanation 
of their systematic language errors.

While it is incontestable that LLMs offer a potentially useful interactive tool that mimics human conversation, 
it remains to be established whether their ability to understand language is on a par with that of humans. To 
answer, we investigate the ability of 7 state-of-the-art LLMs in a comprehension task that features prompts whose 
linguistic complexity is purposely kept at a minimum, e.g. (1).

 (1)  John deceived Mary and Lucy was deceived by Mary. In this context, did Mary deceive Lucy?

The benefit of this methodology is that it tests LLMs in the very task for which they have been trained: respond 
to questions based on the input. While previous research testing LLMs on grammaticality judgments has 
found that their performance is not comparable to that of humans31, the results of this reported method are 
not unequivocally convincing. Some have argued that judgment prompting is not a suitable methodology for 
assessing LLMs, because this is (putatively) a metalinguistic skill that LLMs do not necessarily possess24,46. Thus, 
in the present work we test LLMs in their default ability to answer questions based on input. Given their use in a 
range of meaning-sensitive tasks, from giving medical diagnoses to travel advice and to being “thought partners” 
to students3,47, it is expected that LLMs should be able to accurately parse prompts featuring high-frequency 
verbs and constructions.

Why is this a task that models should be expected to perform reasonably well? While models are trained 
to predict tokens48, when taken together with their respective interface setup, their abilities are marketed as 

Fig. 1. GPT-3 (text-davinci-002) and ChatGPT-3.5 performance on a grammaticality judgment task that 
involves low-frequency constructions. Inaccurate responses are marked in red. Accurate responses are marked 
in green. Full model replies and detailed linguistic analyses are available (https://osf.io/dfgmr/).
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going significantly beyond next-token prediction; they are portrayed as fluent conversational agents that display 
long-context understanding across modalities (e.g., 21on Gemini). While LLMs, understood in the present work 
as the underlying model together with the interface setup, generate content that looks remarkably like human-
to-human conversation, it remains to be established whether their ability to understand language is on a par 
with that of humans. This is a matter with large-scale consequences for the applied use of LLMs. To provide an 
example, an air company was recently asked to pay damages to a passenger who was provided with inaccurate 
information by its chatbot. According to a company representative, the chatbot indeed included “misleading 
words” in its replies49. While the court issued a ruling of negligent misrepresentation in favor of the passenger, 
the company maintained that the chatbot is a separate legal entity with reasonable linguistic abilities, and thus 
responsible for its own words. What remains to be established is the cause of the error. Do chatbots and other 
interactive applications that rely on the same token-predicting technology possess a human-like language 
understanding of written language or is their understanding capacity limited and consequently likely to give rise 
to such errors?

To this end, we asked whether LLMs’ language performance is on a par with that of humans in language 
comprehension task. Two research questions (RQs) emerge from this general aim: RQ1: Do LLMs reply to 
comprehension questions accurately? RQ2: When the same question is asked multiple times, do LLMs reply 
consistently?

Results
Results are reported separately for accuracy (RQ1) and stability (RQ2). First, LLMs are compared between each 
other on these two variables. Then, their performance is contrasted with that of humans. (Generalized) Linear 
Mixed Effect Models ((G)LMMs) are used to analyze the data, using the lme450 and lmerTest51 packages in R. 
LLM and human datasets, together with the annotated code employed in the analyses are available  (   h t t p s : / / o s f 
. i o / d f g m r /     ) .  

LLMs: accuracy
Accuracy by model and setting Accuracy rates by model and setting (open-length vs. one-word) are displayed 
in Fig. 2A. The intercept in an intercept-only GLMM (accuracy ~ 1 + (1 | test_item)) is not significantly different 
from zero (β = 0.224, z = 1.71, P = .087), indicating at-chance performance when all LLMs are taken together. 
A first chi-square test between a GLMM with a main effect of model (accuracy ~ model + (1 | test_item)) and 
this intercept-only GLMM however finds significant differences in the performance of the 7 LLMs, justifying 
the introduction of a model parameter in the GLMM (X2(6) = 202.8, P < .001). The intercept of a GLMM with 
Bard set as baseline category is negative (β = -0.688, z = -3.433, P = .001), indicating that the performance of 
at least one LLM is below chance. By systematically changing the baseline category, we find that Mixtral is the 
first LLM to perform at chance (β = 0.103, z = 0.524, P = .600). With a mean accuracy of 0.66, Llama2 is the 
first LLM to perform above chance (β = 0.752, z = 3.720, P < .001), alongside Falcon (M = 0.66) and ChatGPT-4 
(M = 0.83). Further, we find that ChatGPT-4 has a significantly higher accuracy than all other LLMs: When 
setting ChatGPT-4 as the baseline category, all parameters for all other models are significant (Ps < 0.001) and 
negative (βs < -1.01, zs < -4.31).
A second chi-square test between a GLMM with a main effect of setting (accuracy ~ model + setting + (1 | test_
item)) and a GLMM without it (accuracy ~ model + (1 | test_item)) finds a significant main effect of setting 
(X2(1) = 82.587, P < .001), with more accurate responses in the one-word setting than in the open-length setting 
(β = 1.037, z = 8.872, P < .001). We additionally find an interaction between model and setting (X2(6) = 43.374, 
P < .001), indicating that most but not all LLMs perform more poorly in the open-length setting.

LLMs: stability
In order to establish the extent to which the LLMs provide stable responses, we performed an analysis at the item 
level (as opposed to the individual trial level for the accuracy data). Here, the responses to an item were coded as 

Fig. 2. (A) Mean accuracy by model and setting. (B) Mean stability by model and setting.
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stable (= 1) if all three responses to a prompt were the same, and as unstable (= 0) if one response was different 
than the other two.

Stability by model and setting Stability rates by model and setting are displayed in Fig.  2B. As was the 
case for accuracy, a GLMM including a parameter for model significantly outperforms a GLMM without it 
(X2(6) = 21.438, P = .002). In a GLMM with Bard (the LLM with the lowest stability, M = 0.66) as baseline cat-
egory, the intercept is positive (β = 0.610, z = 2.810, P = .005), indicating that even for the most unstable model, 
the responses are not fully random (i.e., there is a higher likelihood of stable than unstable response patterns). 
Additionally, the model parameters show that stability is significantly higher for Falcon (β = 0.901, z = 2.357, 
P = .018; M = 0.83) and Gemini (β = 0.733, z = 1.976, P = .048; M = 0.80). Taken together with accuracy results, 
significantly higher stability for Falcon and Gemini respectively translates into Falcon being partially consistent 
in providing accurate replies, and Gemini being partially consistent in providing inaccurate replies. Employing 
Falcon (the most stable LLM) as baseline category for the GLMM, we find that Bard (β = -0.901, z = -2.357, 
P = .018) and Mixtral (β = -1.340, z = -3.559, P < .001) display less stable response patterns than Falcon, while all 
the other LLMs perform comparably to Falcon.

Similar to accuracy, a second chi-square test between a GLMM with a main effect of setting 
(stability ~ model + setting + (1 | test_item)) and a GLMM without it (stability ~ model + (1 | test_item)), finds 
a significant main effect of setting on stability (X2(1) = 5.160, P = .023), with answers being more stable in the 
one-word setting (β = 0.450, z = 2.262, P = .024). Lastly, we find no significant interaction between model and 
setting, indicating that the effect of setting does not differ between the different LLMs (X2(6) = 4.241, P = .644).

LLMs vs. humans
Comparative analyses showed major differences in the performance of the two responding agents (humans vs. 
LLMs) in terms of both accuracy and stability (Fig. 3).

Accuracy by agent and setting Accuracy rates by responding agent and setting are displayed in Fig. 3A. A 
first chi-square test finds that a GLMM with a main effect of agent (accuracy ~ setting + agent + (1 | item) + (1 | 
unit)) significantly outperforms a GLMM without it (accuracy ~ setting + (1 | item) + (1 | unit)), justifying the 
introduction of an agent parameter in the GLMM (X2(1) = 23.356, P < .001). Additionally, a GLMM with an in-
teraction between agent and setting (accuracy ~ setting * agent + (1 | item) + (1 | unit)) outperforms the GLMM 
that only includes them as main effects (X2(1) = 45.265, P < .001). In the GLMM including the interaction, with 
humans and the open-length setting as baseline category (β = 3.270, z = 16.190, P < .001 for the intercept), we 
find that LLMs perform significantly worse than humans in the open-length setting (β = -3.508, z = -6.103, 
P < .001), that humans do not perform better in the one-word setting as opposed to the open-length setting (β = 
-0.228, z = -1.561, P = .118), and that the gap between humans and LLMs is significantly smaller for responses in 
the one-word setting, indicating a discrepancy between the response settings for LLMs that is not observed for 
humans (β = 1.276, z = 6.833, P < .001; see Fig. 3).

Stability by agent and setting Stability rates by responding agent and setting are displayed in Fig. 3B. As was the 
case for accuracy, a first chi-square test finds that a GLMM with a main effect of agent (stability ~ setting + agent 
+ (1 | item) + (1 | unit)) outperforms a GLMM without it (X2(1) = 10.515, P = .001). A second chi-square test ad-
ditionally finds that a GLMM with an interaction between agent and setting (stability ~ setting * agent + (1 | item) 
+ (1 | unit)) significantly outperforms a GLMM which includes agent and setting as main effects (X2(1) = 4.903, 
P = .027). In the GLMM including the interaction with humans and the open-length setting again as baseline 
category (β = 2.286, z = 17.368, P < .001 for the intercept), we find that LLMs are less stable than humans in the 
open-length setting (β = -1.385, z = -3.800, P < .001), that humans are not less stable in the open-length setting 

Fig. 3. (A) Mean accuracy by responding agent and setting. (B) Mean stability by responding agent and 
setting.
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compared to the one-word setting (β = -0.038, z = -0.362, P = .717), and that in the one-word setting, the stabil-
ity gap of LLMs with humans is smaller than in the open-length setting (again indicating a discrepancy between 
the settings for LLMs that is not observed for humans; β = 0.507, z = 2.234, P = .026; see Fig. 3).

Lastly, anticipating possible arguments that LLMs as a category should be represented by their best performing 
representative, ChatGPT-4 (the best performing LLM among those tested) can be compared to the best 
performing humans (as opposed to the averaged performance of all humans). Given that n = 51 human subjects 
perform at ceiling in terms of accuracy and therefore stability, while ChatGPT-4 does not perform at ceiling on 
either variable, it follows that —notwithstanding the great performance overlap between LLMs and humans— 
even the best performing LLM performs significantly worse than the best performing humans. Finally, while 
a sufficiently powerful statistical analysis is not allowed by the current data (given that each LLM was treated 
as a unit of observation, like a single human participant), all human participants taken together outperform 
ChatGPT-4 at a descriptive level, with a mean accuracy of 0.89 vs. 0.83 for ChatGPT-4, and a stability rate of 0.87 
(0.78 for ChatGPT-4).

Discussion
This work sheds light on what guides output generation in LLMs: (i) the human-like ability to parse and 
understand written text, or (ii) the leveraging of artifacts in the training data. To do so, we test 7 state-of-the-art 
LLMs on comprehension questions targeting sentences that feature high-frequency constructions and lexical 
items, and whose linguistic complexity is kept at a minimum. Particularly, we aim at determining whether 
LLMs generate answers that are both accurate (RQ1) and stable over repeated trials (RQ2). Systematic testing 
shows that the average performance of LLMs as a group is at chance for accuracy, and that LLMs are relatively 
unstable in their answers. On the other hand, humans tested on the same comprehension questions provide 
mostly accurate answers (RQ1) which almost never change when a question is repeatedly prompted (RQ2). 
Importantly, these differences between LLMs and humans are pronounced even though the models’ replies are 
favorably scored, ignoring any possible inconsistencies they contain (i.e., in the one-word setting; see section 
‘Methods’).

Language parsing, referring to the ability to comprehend and produce language by assigning strings 
of symbols with meaning, is a distinctively human ability52. This explains why humans in our experiment 
responded accurately and without alternating answers when a question is asked multiple times, or with different 
instructions. For humans, failure to reach at-ceiling performance is explained by the interplay of processing 
factors45 and interspeaker variation which affects interpretative choices. For instance, given the prompt Steve 
hugged Molly and Donna was kissed by Molly. In this context, was Molly kissed? the answer is “no”, though some 
might assign the verb to kiss a reciprocal reading consequently replying “yes”. Nonetheless, despite processing 
limitations and the variability induced by subjective choices, humans cohesively outperform LLMs both in terms 
of accuracy and stability, thus confirming that testing LLMs on foundational tasks can reveal shortcomings 
which remain concealed in more sophisticated settings8.

The LLM outputs differ from human answers both quantitatively and qualitatively. Quantitatively, the 
averaged accuracy of LLMs as a group is at chance, and the models which manage to surpass the chance threshold 
(i.e., Falcon, Llama2, and ChatGPT-4) reach accuracy rates that are far from perfect. The best performing LLM, 
ChatGPT-4, performs worse than the best performing humans. Secondly, while all LLMs perform above chance 
in terms of stability, none of them succeeds in consistently providing the same answer to a question. Taken 
together, this evidence translates into an overall inability on the LLMs’ part to tackle simple comprehension 
questions in a way that can be reasonably called ‘human-like’.

Building on how their outputs show surface similarities with natural language, LLMs have been endowed with 
human-like language skills both in public discourse, where they are described as “understanding”, “reasoning”, 
or “intelligent”, and in science, where their adoption as cognitive models, and even theories, is increasingly called 
for23,44. Our results suggest that such a framing may not be justified at present. Importantly, once a LLM has been 
invested with competence over a language phenomenon, without theoretically informed hypotheses at hand53, 
the causes of its failures to perform at ceiling leave room for speculation. We thus interpret the LLMs’ failure in 
providing accurate and stable answers in a simple comprehension task as suggesting that the models lack a real 
understanding of language: they produce words that are like semantic black-boxes, approximating the surface 
statistics of language and the more ‘automatic’ aspects of parsing54. In fact, it is not simply the lower accuracy, 
but also the reduced stability in LLM responses that suggests an absence of a human-like algorithm that maps 
syntactic information directly onto semantic instructions, with considerably lower tolerance for differing 
judgments of the kind demonstrated in our study. Humans, possessing an invariant compositional operator 
for regulating grammatical and semantic information55, are evidently less prone to error here. In addition, 
LLMs are not suitable for serving as theories of language since their representational capacities are virtually 
unbounded, rendering their representations arbitrary and not explanatorily grounded, belonging as they do to 
the class of Universal Functional Approximators56, which have been shown to be capable of approximating any 
mathematical function57. Consequently, LLMs bear a closer resemblance to tools such as generalized derivatives 
than scientific theories [see also58].

Additionally, the differences between LLM and human performance are also qualitative in nature. First, all 
human participants with no exception provide one-word replies regardless of the setting. This shows alignment 
between subjects on the amount of information that is necessary in order to satisfactorily reply to a question59, 
and even in this space of pragmatics humans seem to comply with principles of computational efficiency and 
relevance that are built out of the path that syntactic inferences carve out for them60. This also marks a stark 
difference from LLMs which typically provide lengthy explanations, even in the one-word setting, thus defying 
the task instructions. In these explanations, their reasoning is broken down into logical steps which often contain 
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irrelevant or contradicting information. For example, to the prompt “Franck read to himself and John read to 
himself, Anthony and Franck. In this context, was Franck read to?”, Gemini replies (2):

 (2)  “In this context, it’s impossible to say for sure if Franck was read to. Here’s why:

  1.  Limited information: While the sentence “John read to himself, Anthony and Franck” implies John read 
aloud to others, it doesn’t clarify if Franck was one of the recipients or just present during the reading.

 2.  Separate actions: The sentence about Franck reading to himself is separate and doesn’t necessarily con-
nect to John’s reading session.

 3.  Ambiguity: The phrase “read to” can have different interpretations depending on the context. It could 
mean reading aloud for someone or simply reading in the presence of someone.

Without additional information about the specific situation, such as John’s reading material, the purpose of his 
reading, or the relationship between the characters, it’s impossible to determine if Franck was actually read to 
by John.

Here are some possibilities based on the limited information:

• Franck was read to: John read aloud to both Anthony and Franck, and Franck listened.
• Franck wasn’t read to: John read aloud only to Anthony, and Franck was simply present during the reading.
• Franck listened to himself: Both sentences describe independent reading activities, with Franck reading si-

lently to himself and John reading aloud to others.

Therefore, the answer remains uncertain due to the lack of sufficient context.”

The correct answer to the question is “yes”. Gemini not only gives the wrong answer, but it also answers 
redundantly and mixes unrelated matters about the nature of the characters and the type of reading material, 
none of which plays a role in answering the question. This limited ability to reason does not alter the fact that 
LLMs can fluently produce grammatical sentences on any topic23. However, as Mahowald et al.23 argue, to 
claim that LLMs have human-like linguistic abilities, formal competence is not enough: LLMs need to show 
competence in reasoning, world knowledge, pragmatic inference, etc. Humans perform language tasks such as 
the one we developed, using a combination of core grammatical abilities, semantico-pragmatic knowledge, and 
non-linguistic reasoning.

The problem of redundant, semantically irrelevant information is not a trivial one. Our testing showed 
that obtaining one-word replies from the tested LLMs was possible only in a reduced number of cases (mostly 
in ChatGPT-4 and Falcon). While this issue was ignored for the purposes of coding in the one-word setting, 
because we wanted to give the models the benefit of the doubt, it further showcases how LLMs’ outputs are 
sensitive to the meaning of prompts only in a superficial manner61. While pre-trained LLMs might not have the 
skills necessary for following specific instructions such as the one we provided (i.e., reply using only one word), 
it should be noted that ChatGPT-3.5, ChatGPT-4, Bard and Gemini include Reinforcement Learning from 
Human Feedback (RLHF) in their training, which means that their performance in this experiment benefitted 
from previous targeted interventions aimed at fixing incongruent outputs and maximizing compliance to user 
requests; yet, these models’ replies fail to conform to task demands.

If the LLMs’ fluent outputs are taken to entail human-like linguistic skills (i.e., from the production of a 
correct sentence such as “The scientist is happy”, we infer that the model has knowledge of the relevant rules that 
put the sentence together), then it follows that LLMs should possess mastery over all the words, constructions, 
and rules of use, that figure in and govern their outputs. Our results from grammaticality judgments (Fig. 1) 
and language comprehension tasks (Figs. 2 and 3) suggest that this is not the case: distinctly non-human errors 
are made. To discuss an example, when asked whether “The patient the nurse the clinic had hired admitted met 
Jack” is grammatically correct, GPT-3 said no, providing the wrong answer (Fig. 1). While humans likewise err 
in hard-to-process sentences of this kind owing to cognitive constraints and unmet prediction expectations62, 
what strikes as surprising is not GPT-3’s incorrect judgment per se, but rather the correction that the model 
volunteered: “The nurse had hired at the clinic a patient who admitted met Jack”. This answer contains a semantic 
anomaly that marks an important deviation from any answer a human would produce: a nurse hiring a patient. 
Even if we change the methodology from judgment prompting to simple question answering, we get similar 
errors that suggest that the tested models do not really understand the meaning of words. Recall that Gemini 
could not answer as to whether Franck has been read to (after being told that “John read to himself, Anthony and 
Franck”; example 2), because it lacks information “such as John’s reading material”. Overall, if we attempt to map 
the encountered LLM errors across levels of linguistic analysis, it seems that their incidence becomes greater 
as we move from basic phonological form to the more complex outer layers of linguistic organization (Fig. 4).

While LLMs are often portrayed through wishful mnemonics that hint to human-like abilities64, seemingly 
sound performance may hide flaws that are inherent to language modelling as a method: intelligence cannot in 
fact emerge as a side product of statistical inference65, nor can the ability to understand meaning28. Our results 
offer an argument against employing LLMs as cognitive theories: the fact that LLMs are trained on natural 
language data, and generate natural-sounding language, does not entail that LLMs are capable of human-like 
processing; it only means that LLMs can predict some of the fossilized patterns found in training texts. Claiming 
a model’s mastery over language because of its ability to reproduce it, is analogous to claiming that a painter 
knows a person because they can reproduce this person’s face on canvas, just by looking at her pictures. Unjustly 
equating LLMs’ abilities to those of humans in order to justify their mass-scale deployment in applied areas, in 
turn, results in the biases present in LLMs’ training data66 being allowed one more display venue.
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With respect to practical applications, in AI reproducing high-level reasoning is overall less demanding and 
needs less computational power than comparatively easier tasks7. At present, LLMs are employed in settings 
which require high-level reasoning. For instance, LLMs can reach high accuracy in answering medical questions3 
and are believed to be ready for testing in real-world simulations67. While LLMs in a white coat strike many as 
an implausible scenario, in reality LLM-based chatbots already reply to any question that any human user in 
real-life situations may pose, possibly including doctors. Except for warnings typically issued when ethically 
problematic words or politically incorrect concepts figure in prompts68, often chatbots reply without flagging 
any hesitations or lack of knowledge. As a result, the message conveyed is that whatever content LLMs output, 
it is indeed the product of true understanding and reasoning. However, as the results obtained in this work 
demonstrate alongside a consistent body of evidence30–32,34,69, coherent, sophisticated, and refined outputs 
amount to patchwork in disguise.

To conclude, LLMs’ fluent outputs have given rise to claims that models possess human-like language abilities, 
which would in turn allow them to act as cognitive theories able to provide mechanistic explanations of language 
processing in humans23,44. Following evidence that LLMs often produce non-human outputs70, in this work 
we tested 7 state-of-the-art LLMs on simple comprehension questions targeting short sentences, purposefully 
setting an extremely low bar for the evaluation of the models. Systematic testing showed that the performance of 
these LLMs lags behind that of humans both quantitatively and qualitatively, providing further confirmation that 
tasks that are easy for humans are not always easily developed in AI8. We argue that these results invite further 
reflection about the standards of evaluation we adopt for claiming human-likeness in AI. Both in society and 
science, the role of LLMs is currently defined according to inflated human-like linguistic abilities71, as opposed 
to their real capacities. If the application of internalized linguistic rules is absent and LLMs do not go beyond 
reproducing input patterns72, all that is presented as a danger induced by the stochastic nature of LLMs can be 
anticipated73. If LLMs are useful tools, understanding their limitations in a realistic way paves the way for them 
to be better and safer.

Methods
Materials
The language understanding abilities of 7 LLMs are tested on a set of comprehension questions (n = 40). 
Specifically, the employed prompts have the following characteristics: (a) sentences are affirmative (i.e., contain 
no negation, which is known to negatively impact LLM performance29), (b) they are linked through coordination, 
(c) either 3 or 5 human entities are featured in each prompt, all identified by proper names (i.e., no pronouns), 
and (d) high-frequency verbs are used (e.g., to cook, to hug, to kiss), so as to maximize the chances of LLMs 
replying correctly. These characteristics were chosen with the explicit aim to minimize grammatical complexity 
(e.g., avoiding entangled pronoun resolution, the complex semantics of negation, etc.). Following previous 
research that has suggested that LLMs fail to be stable in their answers to a question prompted repeatedly31, we 

Fig. 4. Mapping of the types of errors presented in Fig. 1 onto levels of linguistic analysis. The observations for 
phonology are based on the results of63.
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prompted each comprehension question multiple times to assess the stability of answers. To obtain the right level 
of comparisons for determining human-likeness, the performance of the LLMs is compared to that of human 
subjects (n = 400) who were tested on the same stimuli. Table 1 provides an overview of the prompts, with one 
sample sentence and question per condition. The full list of prompts alongside the obtained replies by both 
humans and LLMs is available at https://osf.io/dfgmr/.

LLMs
All prompts were presented to the LLMs in two settings: (i) open-length setting and (ii) one-word setting. In 
each setting, every prompt was repeated three times, occasionally refreshing LLMs’ testing context and without 
allowing the repetition of the same prompt within the same context. In practical terms, this means that the first 
query in the chat interface represents zero-shot testing, whereas subsequent queries are subject to the influence 
of previous ones (few-shot). While this difference may not be ideal upon assessment of the models in isolation, it 
is a necessary condition to ensure straightforward comparability with human results. Thus, this modus operandi 
effectively mirrors how human testing was carried out (as explained in detail below). In (i), LLMs were allowed 
to produce answers of any length. In (ii), the LLMs were prompted using the same materials as in (i), but the 
instruction “Answer using just one word” was added after every question (e.g., “John deceived Mary and Lucy 
was deceived by Mary. In this context, did Mary deceive Lucy? Answer using just one word”). The use of the 
one-word setting was intended to facilitate the LLMs, as it was noted that lengthy LLM replies often contained 
contradictory, irrelevant, and eventually incorrect statements. In total, each of the tested LLMs was prompted 
240 times (120 times per setting). The LLMs’ pool of data thus consists of n = 1,680 replies (240 replies per each 
of the 7 LLMs).

In both settings, all replies were coded for accuracy (1 for accurate answers, 0 for inaccurate answers) and 
stability (1 if the three responses were either coded all as yes or all as no, 0 if at least one response was coded 
differently than the others). In an attempt to give the LLMs the benefit of the doubt and obtain from them the 
best possible result, their responses in the open-length setting which contained no clear error, but also failed to 
directly provide the correct answer, were coded as accurate. Additionally, due to the difficulty of obtaining one-
word replies from LLMs, the decision was made to only code the first relevant piece of information provided in a 
reply in the one-word setting. Put another way, if a LLM correctly replied ‘Yes’ but this was followed by additional 
content that was incorrect, contradictory, or irrelevant, this was coded as accurate. From this it follows, that a less 
lenient coding would further amplify the differences between humans and LLMs. All prompts were merged in a 
unified pool, randomized and administered in random order, first in the open-length setting, and subsequently 
in the one-word setting.

The prompts were given to 7 LLMs, which were chosen as representative of the state of the art: 
ChatGPT-3.574, ChatGPT-475, Llama2 (Llama-2-70B-chat-hf76), Bard77, Falcon (falcon-180B-chat78), Mixtral 
(Mixtral-8 × 7B-Instruct-v0.179), and Gemini21. ChatGPT-3.5, ChatGPT-4, Bard and Gemini include RLHF in 
their training regime. All LLMs were tested in December 2023, with the exception of Gemini which was tested 
in February 2024. ChatGPT-3.5 and ChatGPT-4 were prompted through OpenAI’s interface; Bard and Gemini 
through Google’s interface; and Llama2, Falcon and Mixtral through HuggingFace’s interface.

Human data
For comparison, we tested human participants (n = 400; 200  F, 200  M) on the same prompts. Subjects were 
recruited through the crowdsourcing platform Prolific, and all participants self-identified as native speakers 
of English with no history of neurocognitive impairments. The experiment was carried out in accordance with 
the Declaration of Helsinki and was approved by the ethics committee of the Department of Psychology at 
Humboldt-Universität zu Berlin (application 2020-47). Participants were divided into two groups: 200 subjects 
(100 F, 100 M) were tested in the open-length setting, and 200 subjects (100 F, 100 M) in the one-word setting. 
The prompts (n = 40) originally administered to the LLMs were split into two lists (each presented to half of 
the subjects in a condition), so that each human subject was prompted with half of the questions (n = 20). 
Similarly to the LLMs, each participant saw each question 3 times, providing a total of n = 60 replies. Overall, 
the human pool of data consists of n = 24,000 replies. Human replies were coded for accuracy and stability. To 
ensure compliance, two attention checks were added that are not part of the analyses (i.e., “The door is red. In 
this context, is the door red?” and “The door is green. In this context, is the door blue?”). All prompts, including 
attention checks, were administered to each participant in random order. Data from 2 additional participants 
who did not provide correct answers to all attention checks were excluded from the analyses. Written informed 
consent was obtained from all subjects and/or their legal guardian(s). For each trial, the screen displayed the 

Sample prompt
Number of featured 
entities Target answer

Number of 
prompts 
per 
condition

John deceived Mary and Lucy was deceived by Mary. In this context, did Mary deceive Lucy? 3 Yes 10

Steve hugged Molly and Donna was kissed by Molly. In this context, was Molly kissed? 3 No 10

Jessica and Mary were kissed by Alice. Jessica was kissed by Samuel and Andrew was kissed by Mary. In this context, 
was Mary kissed? 5 Yes 10

Bob kissed Donna and Barbara kissed Peter. Donna was hugged by Alice. In this context, was Alice hugged? 5 No 10

Table 1. Overview of testing materials.
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prompt (i.e., the sentence, its related question and, in the one-word setting, the additional instruction). The 
experiment was carried out with the jsPsych toolkit80, and had a median completion time of 13.4  min. Full 
participant data can be found at https://osf.io/dfgmr/. 

Future work
One way the current study could be built upon is through testing humans in a speeded setting (vs. the untimed 
setting employed in the present study). It is possible that human accuracy may decrease when humans are put 
under time pressure: unlimited time indeed allows recruitment of reasoning resources that are not exclusively 
linguistic, and which possibly enhance accuracy. Should this prediction be borne out, it would help explain what 
is missing in LLMs and why they underperform in some tasks. Indeed, recent LLMs (e.g., OpenAI o1 models) 
seem to incorporate novel forms of multi-step reasoning, making it possible that these models will perform 
better at our benchmark.

Data availability
The data and code associated with the present manuscript are available at https://osf.io/dfgmr/.
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